topbanner


Microfluidics and Lab-on-a-Chip Technologies

Background

Microfluidic and lab-on-a-chip techniques enable the controlled handling of sub-microlitre volumes of fluids in an automated and high-throughput manner, offering miniaturised methods for carrying out laboratory procedures in an on-chip format. As most biological processes occur in aqueous solutions, microfluidic systems are inherently suitable to handle particles and cells suspended in fluids with micron-scale precision and in a biocompatible manner, creating in vitro mimics of biological systems.

expfig1

expfig2

Microfabrication

By using photo-lithography and soft-lithography, customised, biocompatible, polymeric devices for microfluidic assays can be readily prototyped in house. Such fabrication capabilities are used to produce lab-on-a-chip devices amenable to perform on-chip cell culture, cell manipulation and patterning, drug delivery and screening, artificial cell membrane formation, as well as for  molecular- and synthetic-biology applications.

Microfluidics Key-benefits

REDUCED SAMPLE VOLUMES - BIOCOMPATIBILITY - HIGH-THROUGHPUT CAPABILITIES

SINGLE CELL RESOLUTION - FAST PROTOTYPING - MICROSCOPY READY

In vitro models of disease

By combining microfluidic techniques with the culture and manipulation of human primary tissue, physiologically relevant models of disease can be built for mechanistic studies and for drug testing, providing animal-free solutions to enhance the understanding of disease response to therapeutic approaches. In addition, the miniaturisation properties of microfluidic in vitro disease models enable to maximise the number of conditions tested when using limited amount of precious tissue samples derived from patients.

expfig3


expfig2

From lab bench to industry

We work closely with the Biotech an Pharmaceutical industries for uptake and optimization of microfluidic techniques in R&D laboratories. In addition, we have recently created ScreenIn3D, a start-up company that provides miniaturised oncology drug screening services using 3D, human in vitro models of disease, providing innovative and scalable solutions to precision medicine.


© Copyright 2017-2019 by Michele Zagnoni